Assembler code manual
For the One Square Inch TTL CPU
https://hackaday.io/project/161251-1-square-inch-ttl-cpu
R.J.H. 20181020

This is a von Neumann architecture that can access 64Kbytes of memory. The memory is organized as bytes. When 16-bit words are stored, the LSB is at an even address and the MSB is at the following uneven address.

I/O locations should be memory mapped.

The CPU relies on microcode to execute its instructions. This document assumes that the microcode version of oct 19th, 2018 is in the processor. The microcode itself is not discussed here.

GENERAL INSTRUCTION INFORMATION

REGISTERS

	
	Name
	Size
	Address

	A
	Accumulator
	16 bits
	0x0004

	PC
	Program counter
	16 bits
	0x0002

	SP
	Stack pointer
	8 bits
	0x0000

	
	Internal use
	8 bits
	0x0001

	
	Internal use
	16 bits
	0x0006

- The registers are stored in the RAM at the indicated address

RESERVED MEMORY LOCATIONS
RAM locations 0x0000-0x00FF can be accessed with Zero-page addressing
RAM locations 0x0100 – 0x1FF contain the stack.
RAM locations 0x0200 – 0x2FF are used for the compare instruction.
After reset, the processor starts at address 0x8012 so it is useful to have ROM locations there. The following locations in ROM must contain fixed values:
	Address
	Value
	

	0x8000
	0x10
	

	0x8001
	0x80
	

	0x8002
	0x00
	

	0x8003
	0x20
	

	0x8100-0x81FF
	0x02-0x01
	Table of increment-by-two values

	0x8200-0x82FF
	0xFE-0xFD
	Table of decrement-by-two values

ADDRESSING MODES
There are four addressing modes
· Immediate
· Direct addressing (Zero page mode)
· Indirect
· Implied

MOVE INSTRUCTIONS
LDW		Load	Word	
	LDW
	1st byte
	2nd byte
	example

	Zero page
	0x08
	Z page location
	LDW A,var

	Indirect
	0x60
	Z page pointer
	LDW A,(var)

LDB		Load	Byte
	LDB
	1st byte
	2nd byte
	example

	Immediate
	0x30
	Immediate byte
	LDB AL,#0x78

	Immediate
	0x2C
	Immediate byte
	LDB AH,#0x78

	Indirect
	0x40
	Z page pointer
	LDB A,(var)

Immediate loading of the lower half of A will clear the upper half.

STW		Store	Word	
	STW
	1st byte
	2nd byte
	example

	Zero page
	0x38
	Z page location
	STW var,A

	Indirect
	0x70
	Z page pointer
	STW (var),A

STB		Store	Byte
	STB
	1st byte
	2nd byte
	example

	Indirect
	0x50
	Z page pointer
	STB (var),A

PUSH	Push
	PUSH
	1st byte
	2nd byte
	example

	Zero page
	0xC0
	Z page location
	PUSH var

Pushes the 16-bit contents of the Z-page location to stack. Before use, the stack must be initialized to an even value.
POP		Pop
	POP
	1st byte
	2nd byte
	example

	Indirect
	0xD0
	Z page location
	POP var

		

ARITHMETIC INSTRUCTIONS

INCD		Increment Double
	INCD
	1st byte
	2nd byte
	example

	Implied
	0x19
	0x81
	INCD A

Adds 2 to the contents of A. It does only effect the lower byte of A. The instruction works with a table at address 0x8100-0x81FF in ROM. The second byte of the instruction is the MSB of the table location. By using another second byte, the instruction can work with another table.
The used table at 0x8100 is also used by the microcode to increment the PC and the stack pointer.

DECD	Decrement Double
	DECD
	1st byte
	2nd byte
	Example

	Implied
	0x19
	0x82
	DECD A

Subtracts 2 from the contents of A. It does only effect the lower byte of A.
The used table at 0x8200 is also used by the microcode to decrement the stack pointer.

CMPB	Compare Byte
	CMPB
	1st byte
	2nd byte
	example

	Zero page
	0xE0
	Z page location
	CMPB A,var

Compares the lowest byte of A with the byte in the zero page location.The result of the compare is put in A:
· A = 0x00 if the bytes were equal
· A = 0x80 if the bytes were not equal

PROGRAM FLOW INSTRUCTIONS
All instructions have a length of two bytes (except CALL, that is four bytes). Before fetching an instruction, the PC is incremented. Only the lowest byte of the PC is incremented. Jumping to another 256-byte page can be done with the PAGE instruction. CALL and RET can also cross page boundaries. It is also possible to load the PC (on zero page location 2) with a 16-bit value representing the jump address.
BR		Branch (Jump to same-page location)
	BR
	1st byte
	2nd byte
	example

	Implied
	0x9C
	New PCL value
	BR label

BRP		Branch if positive
	BR
	1st byte
	2nd byte
	example

	Implied
	0xA0
	New PCL value
	BRP label

The BRP jump is only done if bit7 of the A register is 0
BRM		Branch if minus
	BR
	1st byte
	2nd byte
	example

	Implied
	0x90
	New PCL value
	BRM label

The BRM jump is only done if bit7 of the A register is 1
BEQ		Branch if equal
	BR
	1st byte
	2nd byte
	example

	Implied
	0xA0
	New PCL value
	BEQ label

The BEQ is convenient to use after a CMPB instruction. The jump is done when both bytes were equal.
BNE		Branch if not equal
	BR
	1st byte
	2nd byte
	example

	Implied
	0x90
	New PCL value
	BNE label

The BNE is convenient to use after a CMPB instruction. The jump is done when both bytes were not equal.

PAGE	Jump to another page
	PAGE
	1st byte
	2nd byte
	example

	Implied
	0xC8
	New PCH value
	 PAGE 0x84

The PAGE instruction also sets LSB of the PC to 0. In the current version this has the effect that next executed instruction is at 0x8402 because the PC is incremented before an instruction is fetched.

CALL	Call subroutine
	CALL
	1st byte
	2nd byte
	3rd byte
	4th byte
	example

	Immediate
	0xB0
	unused
	New PCL value
	New PCH value
	 CALL subr_name

The 16-bit return address is pushed on the stack, and the program continues at the subroutine address. Before use, the stack must be initialized to an even value.

RET		Return from subroutine
	RET
	1st byte
	2nd byte
	example

	Implied
	0xD0
	0x02
	RET

The program counter is popped from the stack.

ASSEMBLER DIRECTIVES

DB		Define byte
The specified byte is placed in the code.
DW		Define word
The specified word is placed in the code
DS		Define storage
The specified number of bytes is reserved in the code
EQU		Define label
The label at the beginning of the line gets the value that is specified after “EQU”. Note that there must be a “:”directly after the label. It is used to define constant values.
ORG		Define origin
The assembly continues at the specified address
TABLE	Define a 256-byte table
This is used with the values INCD and DECD. This directive can be used to generate the required tables at address 0x8100 and 0x8200

Note that the assembler will automatically align to even locations, except for a DB directive.

--- end ---
1

